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Motivation Two Systems in Human Cognition ;;

System 2: Slow Thinking

(Both images generated by FLUX.)
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[1] Kahneman, Daniel. Thinking, fast and slow. macmillan, 2011.



Challenges mL models often lack the ability for “Slow Thinking”

P \

Vision Models | O

"?ﬁ f:( s . #—-‘/
J‘ " ~. mm——
P S \\\ S -
W

[Generated by FLUX.]

&)



Challenges

1. Some models have a relatively fixed inference budget. Eg.
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Inference pipeline for CLIP [Radford el al. 2021] Overview of Mask2Former [Cheng el al. 2021]



Challenges

2. Some models support flexible inference budgets, but their performance gains

quickly saturate with additional compute. EQ.

FID-10K

(a) Scaling denoising steps for diffusion models.
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[Peebles et al. Scalable Diffusion Models with Transformers, 2022]
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(b) Scaling token numbers for an
autoregressive image generation model.
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[Bachmann et al. FlexTok: Resampling Images into 1D Token
Sequences of Flexible Length, 2022]



Key Question

Can we find a better test-time scaling method
for vision generative models?




Key Question
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Background Ssuccessful cases in other domains



Background Ssuccessful cases in other domains

1. Reasoning LLMs: Increasing test-time compute leads to continual improvements
IN accuracy on complex reasoning tasks.
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iy [Learning to reason with LLMs, OpenAl, 2024]



Background Ssuccessful cases in other domains

2. Board Game: Test-time compute is essential for success.

Poker game [2017]
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[Brown et al. Safe and Nested Subgame Solving for Imperfect-Information Games. 2017]
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The Idea behind: Search

"Search" means exploring actions or solutions before making a final decision.

[from lecture slides in CS188, 2024 Fall, Berkeley]
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Test-time Scaling via Search

"Search" means exploring actions or solutions before making a final decision.

Best-of-N

Beam Search

[Snell et al. 2024]

(a) Explicit Search (eg. Best of N, Beam Search, MCTS)

14

Let’s analyze each option.

Option A: “because appetite regulation is a field of

staggering complexity.”

Is that a good explanation? Hmm.

Option B: “because researchers seldom ask the right

questions.”

Does this make sense with the main clause?

[OpenAl o1, 2024]

(b) Implicit Search (eg, com




Main ldea: visual Test-time Scaling via Search

How about Search?
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; Can we find a better test-tin;e S
for vision generative models?

[Generated by ChatGPT 40.]
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Overview

What has been done for the task
Provide background for test-time search techniques. that we considerec*?

“ .,

1st paper 3rd paper

“Inference-Time Scaling for
Diffusion Models beyond
Scaling Denoising Steps”

“Mastering the game of Go with
deep neural networks and tree

search” (AlphaGo)

Search in Game Play Search in Vision

Discussion & Research Proposal

Ongoing explorations and future work
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1st paper

Mastering the game of Go
with deep neural networks
and tree search

Google DeepMind. 2016

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

At last — a co
can beat acha

ARTICLE

d0i:10.1038/naturel6961

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'#, Chris J. Maddison', Arthur Guez', Laurent Sifre', George van den Driessche’, )
Julian Schrittwieser!, Ioannis Antonoglou!, Veda Panneershelvam’!, Marc Lanctot!, Sander Dieleman!, Dominik Grewe',
John Nham?, Nal Kalchbrenner', Ilya Sutskever?, Timothy Lillicrap', Madeleine Leach', Koray Kavukcuoglu’,

Thore Graepel® & Demis Hassabis!

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm,
our program AlphaGo achieved a 99.8°% winning rate against other Go programs, and defeated the human European Go
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.

All games of perfect information have an optimal value function, v'(s),
which determines the outcome of the game, from every board position
or state s, under perfect play by all players. These games may be solved
by recursively computing the optimal value function in a search tree
containing approximately b possible sequences of moves, where b is
the game’s breadth (number of legal moves per position) and d is its
depth (game length). In large games, such as chess (b~ 35, d~ 80)' and
especially Go (b=2250, d =2 150)", exhaustive search is infeasible®>, but
the effective search space can be reduced by two general principles.
First, the depth of the search may be reduced by position evaluation:
truncating the search tree at state s and replacing the subtree below s
by an approximate value function v(s) = v"(s) that predicts the outcome
from state s. This approach has led to superhuman performance in
chess?, checkers® and othello®, but it was believed to be intractable in Go
due to the complexity of the game’. Second, the breadth of the search
may be reduced by sampling actions from a policy p(als) that is a prob-
ability distribution over possible moves a in position s. For example,
Monte Carlo rollouts® search to maximum depth without branching
at all, by sampling long sequences of actions for both players from a
policy p. Averaging over such rollouts can provide an effective position
evaluation, achieving superhuman performance in backgammon® and
Scrabble’, and weak amateur level play in Go'’.

Monte Carlo tree search (MCTS)!!!2 uses Monte Carlo rollouts
to estimate the value of each state in a search tree. As more simu-
lations are executed, the search tree grows larger and the relevant
values become more accurate. The policy used to select actions during
search is also improved over time, by selecting children with higher
values. Asymptotically, this policy converges to optimal play, and the
evaluations converge to the optimal value function'?. The strongest
current Go programs are based on MCTS, enhanced by policies that
are trained to predict human expert moves'®. These policies are used
to narrow the search to a beam of high-probability actions, and to
sample actions during rollouts. This approach has achieved strong
amateur play'*~'*. However, prior work has been limited to shallow

policies'*"* or value functions'® based on a linear combination of
input features.

Recently, deep convolutional neural networks have achieved unprec-
edented performance in visual domains: for example, image classifica-
tion'?, face recognition'®, and playing Atari games'”. They use many
layers of neurons, each arranged in overlapping tiles, to construct
increasingly abstract, localized representations of an imagc“’“‘ We
employ a similar architecture for the game of Go. We pass in the board
position as a 19 x 19 image and use convolutional layers to construct a
representation of the position. We use these neural networks to reduce
the effective depth and breadth of the search tree: evaluating positions
using a value network, and sampling actions using a policy network.

We train the neural networks using a pipeline consisting of several
stages of machine learning (Fig. 1). We begin by training a supervised
learning (SL) policy network p, directly from expert human moves.
This provides fast, efficient learning updates with immediate feedback
and high-quality gradients. Similar to prior work'*!%, we also train a
fast policy p, that can rapidly sample actions during rollouts. Next, we
train a reinforcement learning (RL) policy network p, that improves
the SL policy network by optimizing the final outcome of games of self-
play. This adjusts the policy towards the correct goal of winning games,
rather than maximizing predictive accuracy. Finally, we train a value
network vy that predicts the winner of games played by the RL policy
network against itself. Our program AlphaGo efficiently combines the
policy and value networks with MCTS.

Supervised learning of policy networks

For the first stage of the training pipeline, we build on prior work
on predicting expert moves in the game of Go using supervised
learning'**'~*, The SL policy network p,(a|s) alternates between con-
volutional layers with weights o, and rectifier nonlinearities. A final soft-
max layer outputs a probability distribution over all legal moves a. The
input s to the policy network is a simple representation of the board state
(see Extended Data Table 2). The policy network is trained on randomly

Google DeepMind, 5 New Street Square, London EC4A 3TW, UK. °Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA.

*These authors contributed equally to this work.

484 NATURE VOL 529 28 JANUARY 2016

© 2016 Macmillan Publishers Limited. All rights res
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Problem: GO as a...

Board Game Search Problem

Go is a two-player

strategic game.

The goal is to fence off

more territory.
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Problem: GO as a...

Search Problem Challenge: Search Space is Huge!

—3 - Search Breadth: b = 250 '\

? Search Space = B

| 9501 ~ 4.91 x 10°
Search Length: d = 150

19



Problem: GO as a...

Search Problem Challenge: Search Space is Huge!

@

P(als) 0.5 001 ___08 0.01

——>  Reduce Breath with a Policy Network

| Reduce Depth with a Value Network
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Method Overview

Training Pipeline Inference Pipeline

(1) Policy Network (2) Rollout Network (3) Value Network (c) Monte Carlo Tree Search
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Training Pipeline: Policy Network

(1) Policy Network

Move Probability

»

22

Predicted probability for next moves.



Training Pipeline: Policy Network

(1) Policy Network

STAGE 1: Supervised Learning on Human Data
™S Next move prediction

Classification

Wself Play o

30M positions from
human expert games

SL Policy Network RL Policy Network

STAGE 2: Reinforcement Learning by Self-Play
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Training Pipeline: Policy Network

(1) Policy Network
STAGE 1: Supervised Learning on Human Data

30M positions from
human expert games

SL Policy Network
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Training Pipeline: Policy Network

(1) Policy Network

Move Probability
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SL Policy Network RL Policy Network

STAGE 2: Reinforcement Learning by Self-Play
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Training Pipeline: Rollout Policy

(2) Rollout Network _ |
Rollout Policy Model: faster but less accurate rollout policy

Move Probability

30M positions from
human expert games

o6 Rollout Policy



Training Pipeline: Value Network

(3) Value Network

Reinforcement Learning by using data from self-play

S Regression

« 30M games of self-play
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Inference Pipeline: MCTS

- Monte Carlo Tree Search (MCTS) for online planning and lookahead search.

$ = |nitial State

e = Action

w5 ;
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Inference Pipeline: MCTS

- Monte Carlo Tree Search (MCTS) for online planning and lookahead search.

$ = |nitial State
|
- \ e = Action

w5 ;
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Inference Pipeline: MCTS

- Monte Carlo Tree Search (MCTS) for online planning and lookahead search.

$ = |nitial State

. o e = Action
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Inference Pipeline: MCTS

- Monte Carlo Tree Search (MCTS) for online planning and lookahead search.

$ = |nitial State
. I . = Action
114 3t
«(B1) 8




Inference Pipeline: MCTS

- Monte Carlo Tree Search (MCTS) for online planning and lookahead search.

= |nitial State
\Q > = Action

@
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Inference Pipeline: MCTS

- Monte Carlo Tree Search (MCTS) for online planning and lookahead search.

$ = |nitial State

. .. . = Action
AotioF value _;‘ _\?’

l |

a= argmax (Q + u) ‘/

W(Fo1) T

P Policy output I :
N+ 1

Visit count

Bonus u ~
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Inference Pipeline: MCTS

- Monte Carlo Tree Search (MCTS) for online planning and lookahead search.

$ = |nitial State

. e = Action

e :

Value network output

Vise)=(1— )\)VTH(SL) + )‘EL Ve(é?‘) _%
|

Rollout outcome ~ P,




Elo Rating
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Fixed Inference Time: 5s of computation time per move

[BUOISS8)0.d

AlphaGo is many dan ranks stronger than
any previous Go program!

Inajewy

- Single-machine version win 494 out of 495 games (99.8%).

- Distributed version win 100%.

Alpha Go: 40 search threads, 48 CPUs and 8GPUs

e =@ Alpha G0 Distributed: 40 search threads, 1,202 CPUs and 176 GPUs

1
1+ 10(RB—RA)/4OO

E.g., a 1000 Elo difference corresponds to a 99% winning rate.
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Results

Fixed Inference Time: 5s of computation time per move

Elo Rating
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AlphaGo is many dan ranks stronger than
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- Single-machine version win 494 out of 495 games (99.8%).

- Distributed version win 100%.

The distributed version of AlphaGo beat
professional 2-dan player Fan Hui in a formal
five-game match.

Iyoed
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Alpha Go: 40 search threads, 48 CPUs and 8GPUs

e =@ Alpha G0 Distributed: 40 search threads, 1,202 CPUs and 176 GPUs

Elo Gap vs. Winning Rate: E4 =

1

1+ 10(RB—RA)/4OO

E.g., a 1000 Elo difference corresponds to a 99% winning rate.
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Results

Elo Rating
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Fixed Inference Time: 5s of computation time per move
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any previous Go program!
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- Single-machine version win 494 out of 495 games (99.8%).

- Distributed version win 100%.

The distributed version of AlphaGo beat
professional 2-dan player Fan Hui in a formal
five-game match.

One year later, a further scaled version of AlphaGo beat Lee Sedol,
a 9-dan professional (the highest professional rank).
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Alpha Go: 40 search threads, 48 CPUs and 8GPUs

e =@ Alpha G0 Distributed: 40 search threads, 1,202 CPUs and 176 GPUs

Elo Gap vs. Winning Rate: E4 =

1

1+ 10(RB—RA)/4OO

E.g., a 1000 Elo difference corresponds to a 99% winning rate.
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Results

Elo Rating
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Big gains from test-time search.




From AlphaGo to AlphaGo Zero (2017)

1. Single network with from-scratch RL self-play.
2. Search during both training & testing.
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[1] Silver, D., Schrittwieser, J., Simonyan, K. et al. Mastering the game of Go without human knowledge. Nature 550, 354-359 (2017)
39



From AlphaGo to AlphaGo Zero (2017)

Elo rating

5,000 A
4,000 -
3,000 -
2,000 A
1,000 -
0 -
-1,000 A
—2,000 A

-3,000 -

—-4,000 -

 AlphaGo Zero defeated AlphaGo after
72 hours of training, whereas AlphaGo
was trained over several months.

== Reinforcement learning

== Supervised learning
=== AlphaGo Lee

20

30 40 50
Training time (h)

60 70

[1] Silver, D., Schrittwieser, J., Simonyan, K. et al. Mastering the game of Go without human knowledge. Nature 550, 354-359 (2017)
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Takeaways

2* Search is a powerful method for planning at test time.

‘ MCTS may not be suitable for more complex open problems.
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DeepSeek-R1:
LLMs
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DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning

DeepSeek-Al

research@deepseek.com

Abstract

We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1.
DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without super-
vised fine-tuning (SFT) as a preliminary step, demonstrates remarkable reasoning capabilities.
Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing
reasoning behaviors. However, it encounters challenges such as poor readability, and language
mixing. To address these issues and further enhance reasoning performance, we introduce
DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-
R1 achieves performance comparable to OpenAl-01-1217 on reasoning tasks. To support the
research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models
(1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.

wwa DeepSeek-R1 OpenAl-01-1217 DeepSeek-R1-32B OpenAl-ol1-mini DeepSeek-V3
100

3
=
w
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AIME 2024 Codeforces GPQA Diamond MATH-500 MMLU SWE-bench Verified
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N

Figure 1 | Benchmark performance of DeepSeek-R1.




Problem: Reasoning in LLMs

Math Benchmark (eg. AIME) Coding Benchmark (eg. Codeforce)

4 ) You are given a permutation py, p», ... , p, of length n.
For any finite set X, let | X| denote the number of elements in X. Define You have to build an array @ . , .. ., in the following way:
o foreach 1 <i < n, seteitherq; = p, orq; =2n - p.
Find the minimum possible number of inversions in the array q; , @, , ... , a,.
. . A permutation of length n is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a
Where the sum Is ta ken over a” Ordered pPalrs (A7 B) SUCh that A and permutation, but [1,2,2] is not a permutation (2 appears twice in the array), and [1, 3,4] is also not a permutation (n = 3 but there is 4
B are subsets of {1,2,3,--- ,n} with |A| = |B|. For example, S, = 4 in the array).
because the sum is taken over the pairS of subsets An inversion in the array @, , @, , ... , @, is a pair of indices (i, j)such that 1 <i < j <nand g; > a;.
Input
(A, B) < { ((Z), @) y ({ 1}, {1}) ) ({1}, {2}), ({2}, {1 }), ({2}, {2}), ({ 1, 2}, {1, 2})} Each test contains multiple test cases. The first line contains the number of test cases t (1 <t < 103). The description of the test cases
follows.
giving Sz =0+1+04+04+1+2 = 4. Let gz—gzi m— g, where p and q The first line of each test case contains a single integern 2 < n < 5 - 10°).
are relaﬁvely prime pOSiﬁve integers. Find the remainder when p+q IS The second line of each test case contains 1 integers py, b2, ... , by (1 < B < h). It is guaranteed that py, b, ... , P, is a permutation.
d IVIded by 1000 It is guaranteed that the sum of n over all test cases does not exceed 5 - 103.
Output
. . For each test case, print a single integer — the minimum number of inversions in the array a.
[Hendrycks et al. Measuring mathematical problem

solving with the MATH dataset, 2021] Example from https://codeforces.com.
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Background: Effective Test-time Scaling techniques in LLMs

OpenAI 01 : o1 AIME accuracy o1 AIME accuracy
during training at test time
100 - 100 -
80 - 80 -
o
o
> ® >
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O ® O
O (] ® O
= i .
® ° ®
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qv] g}
o ° ol
o
20 - 201 ©
O O
train-time compute (log scale) test-time compute (log scale)

[Learning to reason with LLMs, OpenAl, 2024]
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Background: Effective Test-time Scaling techniques in LLMs

@ @ ® 60
: Generate and label : -
Train generator 100 solutions/problem Train Verifier
501
Generator Generator Verifier
Qi | questions T T T T T ~ 40-
— X
S; | solutions Qi | S; Q’ I S7 ‘ 1% g
I o
Y; | labels g 301
e
n
)
= 20
Figure 4: A diagram of the verification training pipeline. 107
—— 175B Finetuning
. - —— 175B Verification
[OpenAl. Training Verifiers to Solve Math Word Problems, 2021] 0

500 1000 2000 4000 8000
Training Set Size

*We provide evidence that verifiers

scale far more favorably with
additional data than baseline methods.”
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Background: Effective Test-time Scaling techniques in LLMs

The denominator of a fraction is 7 less than 3 times the numerator. If the fraction is equivalent to 2/5, what is the numerator of

@ @ @ the fraction? (Answer: ’ 14 :)

Generate and label () ® @ Let's call the numerator x.

Train generator Train Verifier

100 solutions/problem ) ® @ So the denominator is 3x-7.
Generator Generator Verifier OO @ Weknow that x/(3x-7) = 2/5
() ® @ So5x =2(3x-7).
Qi | questions T T T T T
O ® S 5x=6x-14.
S; | solutons o | s ol | st | v Qo
Y; | labels [OpenAl. Let’s verify step by step. 2023]
Best-of-N Beam Search Lookahead Search
| commuon, ' . ! s oo
Question :_::f:'g_ j _w_ M_ : Question IL T"_ _ g_me_ : Question : ?E:',?::'?E;;"““:"“r‘" :
Figure 4: A diagram of the verification training pipeline. (e r".%. Sl N ;
| | 131 1 \J 1 57 | \ —
. e —_—— — - - - : \ P
[OpenAl. Training Verifiers to Solve Math Word Problems, 2021] Yot fé: fo{fz ok (A | (A~ :
- 4+ N -~ - <l - |. I I I :
r_—l _"I r_-l rg—l . ................................ ;
| | I | [ | I | Continue Search from
( (= (1~ - ( -\‘\i— P N b -
I @ I : | : [ : | : :
Key: —
' I( := Apply Verifier = Full Solution = Intermediate solution step = Selected by verifier = Rejected by verifier

[Google Deepmind. Scaling LLM Test-Time Compute Optimally can
46 be More Effective than Scaling Model Parameters. 2024]




Main Idea: Chain-of-Thought (CoT) with RL

CoT Prompting: CoT trained with RL:

Ask LLMs to “think” before answer. Teach LLMs how to “think” to get correct answers.

Solve for x in the equation 2x+4 = 10.
Solve for x in the equation
2x+4 = 10.
User
User
D U @ U

' Let’s think step by step.

User

<THINK> ...

<THINK>

Vhf‘( "Timizing a token sequence

that leads to a good outcome.

Subtract 4 from both sides, get 2x=10-4=6.
Divide both sides by 2, get x =6 /2 = 3.

Answer: 3

During this process, chain-of-thought ability emerges.
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Method Overview

| am riding a _

1l
X

Pretraining DeepSeek-V3-Base

i Cold Start - Reasoning RL . -

DeepSeek-R1
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Method Overview

| am riding a _

1l
X

Pretraining DeepSeek-V/3-Base DeenSeek—-R1 Zero
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Method: Reinforcement Learning

- Goal: Optimizing a token sequence that leads to a good outcome.

Solve for x in the equation
2x+4 = 10.

<THINK> ...
<THINK>

AL
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Method: Reinforcement Learning

- Goal: Optimizing a token sequence that leads to a good outcome.

- GRPO: Group Relative Policy Optimization.

& deepseek

DeepSeekMath: Pushing the Limits of Mathematical
Reasoning in Open Language Models

Zhihong Shao'*T, Peiyi Wang!'~*", Qihao Zhu!'”*T, Runxin Xu!, Junxiao Song!
Xiao Bi!, Haowei Zhang!, Mingchuan Zhang?!, Y.X. Li!, Y. Wu!, Daya Guo'*

'DeepSeek-Al, *Tsinghua University, *Peking University

{zhihongshao,wangpeiyi,zhuqh,guoday}@deepseek.com
https://github.com/deepseek-ai/DeepSeek-Math (22()22&1)




Method: Reinforcement Learning

- Goal: Optimizing a token sequence that leads to a good outcome.

- GRPO: Group Relative Policy Optimization.

Solve for x in the equation
2x+4 = 10.

r =1
(1)
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Method: Reinforcement Learning

- Goal: Optimizing a token sequence that leads to a good outcome.

- GRPO: Group Relative Policy Optimization.

Solve for x in The equaﬂon EVC”U.GTQ the “"QIT-'
2x+4 = lim sin(x) — x + 3 |
x—0 X

User User

(1)
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Method: Reinforcement Learning

- Goal: Optimizing a token sequence that leads to a good outcome.

- GRPO: Group Relative Policy Optimization.

Solve for x in the equation EVC”U.GTQ the “"QIT-'
2x+4 = 10. lim sin(x) — x + 3 |
x—0 XS

User User

)

Problem: raw reward is too sparse!
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Method: Reinforcement Learning

- Goal: Optimizing a token sequence that leads to a good outcome.

- GRPO: Group Relative Policy Optimization.

Ad\fantage: how much better a specific action is Cpa to the
‘average action in a given state W

55



Method: Reinforcement Learning

- Goal: Optimizing a token sequence that leads to a good outcome.

- GRPO: Group Relative Policy Optimization.

‘Advantage how much better a specmc action is Compared to the |
(' ‘average action in a given state. ‘

How’? In PPQO, Advantage IS Calculated by applylnggenerallzedadvantage
estlmatlon based on the rewards and a learned value function.
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Method: Reinforcement Learning

- Goal: Optimizing a token sequence that leads to a good outcome.

- GRPO: Group Relative Policy Optimization.

‘Advantage how much better a specmc action is Compared to the |
(' ‘average action in a given state. ‘

How’? In PPQO, Advantage IS Calculated by applylnggenerallzedadvantage
estlmatlon based on the rewards and aHearrea-valdetunction.

Group average of rewards. GRPO
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Method: The GRPO Algorithm

- Goal: Optimizing a token sequence that leads to a good outcome.

- GRPO: Group Relative Policy Optimization.
(2)

Evaluate the limit:

sin(x) — x + %
lim

Solve for x in the equation

2x+4 = 10.
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Method: The GRPO Algorithm

- Goal: Optimizing a token sequence that leads to a good outcome.

- GRPO: Group Relative Policy Optimization.
(2)

Evaluate the limit:

Solve for x in the equation
2x+4 = 10.

3
sin(x) — x + %

lim

1 1
Answer — .. Answer-— .. Answer-— :

r=—1 I’=.'l — :—1
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Method: The GRPO Algorithm

Goal: Optimizing a token sequence that leads to a good outcome.

GRPO: Group Relative Policy Optimization.

Evaluate the llmlT
Solve for x in the equation

sin(x) — x + —
lim

2x+4 = 10.

r=-1 r=1

Mean: 0.50, std: 0.86

xd

120

r =1 r =-1 r=1 -1 = -1
Mean: -0.50, std: 0.86

1
.. Answer-— .. An r:0.3
200
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Method: The GRPO Algorithm

Goal: Optimizing a token sequence that leads to a good outcome.

GRPO: Group Relative Policy Optimization.

Evaluate the llmlT
Solve for x in the equation

sin(x) — x + —
lim

2x+4 = 10.

r=-1 r=1

Mean: 0.50, std: 0.86

xd

120

r =1 r =-1 r=1 -1 = -1
Mean: -0.50, std: 0.86

1
.. Answer-— .. An r:0.3
200

F—Hu
o

Advantage A=
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Method: The GRPO Algorithm

Goal: Optimizing a token sequence that leads to a good outcome.

GRPO: Group Relative Policy Optimization.
(1)

Evaluate the limit:

sin(x) — x + %

Iim
s

Solve for x in the equation
2x+4 = 10.

User

I B e

1
p— Answer-— .. An r:0.3

r:l }’:—1 r::l r=1 r=_1 i’=.'l I’=—1 l’=—.'l
Mean: -0.50, std: 0.86

Advantage Mean: 0.50, std: 0.86

{A=0581 A=-1.74 A=058 A=058 "=

73| A=-057 A=-057
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Method: Rule-based Reward Modeling

- Accuracy:

“Rule-Based Models

- Math Problem -> Validate the correctness of final answer Resist Reward Hackin 9.»

- Code Problem -> Run a compiler to generate feedback
- Format: Validate Output Format.

- Thinking process should between ‘<think>" and ‘<think>’.

Training template:

Generated by FLUX

A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process in the mind and then provides the user
with the answer. The reasoning process and answer are enclosed within <think> </think> and

<answer> </answer> tags, respectively, i.e., <think> reasoning process here </think>
<answer> answer here </answer>. User: prompt. Assistant:

Rule-based RL training is simpler and cheaper, and so easier to run at large scale.
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Results for DeepSeek R1 Zero

- Comparison of DeepSeek-R1-Zero and OpenAl o1 models on reasoning-related benchmarks.

GPQA LiveCode

Model AIME 2024 MATH-500 Diamond  Bench CodeForces
pass@l cons@64 pass@l] pass@l1 pass@l1 rating
OpenAl-ol-mini 63.6 80.0 90.0 60.0 53.8 1820
OpenAl-01-0912 74.4 83.3 94.8 77.3 63.4 1843
DeepSeek-R1-Zero  71.0 86.7 95.9 73.3 50.0 1444

DeepSeek-R1-Zero reach comparable performance to OpenAl’s 01 model.

Pass @ 1: Average correctness per single attempt.
Cons @ 64: Accuracy of the majority vote across 64 attempits.
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Results for DeepSeek R1 Zero

- Self-evolution process on AIME dataset

0 DeepSeek-R1-Zero AIME accuracy during training DeepSeek-R1-Zero average length per response during training
12000 -
0.8 -
10000 -
0.7 -
()
0
c I
3 8000 - | it BnEew’ 1 f---T---
0.6 - a :
> —
8 s
3 0.5 S 6000 A
QO C
< @
()
(@)
0.4 - ©
¢ 4000 ~
<
0.3 -
—&— rl-zero-pass@l 2000 A
—&— rl-zero-cons@16
0.2 -== 01-0912-pass@1
=== 01-0912-cons@64 0-
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Steps Steps

DeepSeek-R1-Zero naturally learns to solve reasoning tasks with more thinking time!
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Results for DeepSeek R1 Zero

Question: If a > 1, then the sum of the real solutions of v/a — va +x = x is equal to

Response: <think>

To solve the equation \/ a—vVa+x = x, let’s start by squaring both - - -

(\/a-\/m)zzxz s 4 vaTx =

Rearrange to isolate the inner square root term:
(a—x*)’ =a+x = a®*-2ax’+(x*)? =a+x = x*-2ax*—x+(a®*—a) =

Walt wait. Wait. That’s an aha moment I can ﬂag here
~ Let’s reevaluate this step-by-st if the ¢
We started with the equatlon

Va—vatx=x

First, let’s square both sides:
a—Va+x=x> = \Va+x=a-x
Next, I could square both sides again, treating the equation: - - -

2

"Aha Moment”: DeepSeek-R1-Zero learns to allocate more thinking
fime to a problem by reevaluating its initial approach.
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Discussion

Connection between AlphaGo Zero and DeepSeek R1 Zero

1. Both names contain “Zero”. 2. Both involve RL and search.
3. Learning to search.

DeepSeek R1 AlphaGo Zero

Solve for x in the equation

2x+4 = 10. <THINK> ...

<THINK>
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solve 1+1 =7

© 2

Takeaways o C——

First, the user asked: "solve 1+1 = ?". This is a very basic arithmetic question. | know that 1 + 1 equals 2. It's one

of the simplest math facts.

As an Al, | should respond accurately and helpfully. Since this is straightforward, | can answer directly without

much explanation. But to be engaging, | might add a bit of context or a friendly tone.

Possible responses:

- Just say "2".

o+  Chain-of-Thought (CoT) i
1\ %

- Or, to make it more fun: "1 + 1 equals 2!"

SearC h an d p I an n I n g I n LLI\ | should consider if there's any trick here. Is this a test for something deeper? Like in binary or other bases? But

the user didn't specify any base, so it's safe to assume decimal (base 10).

In binary, 1+ 1is 10, but that's not typically what people mean in this context. The question is written in

standard numerical form, so decimal is implied.

Also, in some philosophical contexts, like in set theory, 1 + 1 = 2 is a fundamental concept, but that might be

overcomplicating it.

The user said "solve", which might imply they want a step-by-step solution, but for something this simple, it's

@ COT may nOt be d i reCtIy unnecessary. | can just state the answer.

To be thorough, | could say: "1 plus 1is equal to 2."

| | . . . . .
Finally, since I'm an Al, | should ensure my response is clear and concise. No need for markdown or anything
e Overthinking!

fancy; plain text is fine.

Response: "1 + 1= 2"

Or to match the query: "The solutionto 1+ 1is 2."

The solutionto 1 + 1 is 2.

This is a basic arithmetic operation where adding the number 1 to another 1 results in 2. If you have

any more questions or need clarification, feel free to ask! @

© C H D
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Inference-Time Scaling for Diffusion Models
beyond Scaling Denoising Steps

Nanye Ma* * 1, Shangyuan Tong* * 2, Haolin Jia®, Hexiang Hu3, Yu-Chuan Su3, Mingda Zhang?, Xuan Yang3,
Yandong Li®, Tommi Jaakkola?, Xuhui Jia® and Saining Xie'3
*Equal contribution, NYU, 2MIT, 3Google, *Work done during an internship at Google

Generative models have made significant impacts across various domains, largely due to their ability
to scale during training by increasing data, computational resources, and model size, a phenomenon
characterized by the scaling laws. Recent research has begun to explore inference-time scaling behavior in
Large Language Models (LLMs), revealing how performance can further improve with additional computation
during inference. Unlike LLMs, diffusion models inherently possess the flexibility to adjust inference-time
computation via the number of denoising steps, although the performance gains typically flatten after
a few dozen. In this work, we explore the inference-time scaling behavior of diffusion models beyond
increasing denoising steps and investigate how the generation performance can further improve with
increased computation. Specifically, we consider a search problem aimed at identifying better noises for the
diffusion sampling process. We structure the design space along two axes: the verifiers used to provide
feedback, and the algorithms used to find better noise candidates. Through extensive experiments on
class-conditioned and text-conditioned image generation benchmarks, our findings reveal that increasing
inference-time compute leads to substantial improvements in the quality of samples generated by diffusion
models, and with the complicated nature of images, combinations of the components in the framework can
be specifically chosen to conform with different application scenario.

1. Introduction

Generative models have transformed various fields, including language [1, 78, 80], vision [60, 61], and
biology [86], by learning to sample from the underlying data distributions. A key factor in their success
is their ability to scale up during training by increasing data volumes, computational resources, and
model sizes. This training-time scaling behavior, often described as Scaling Laws [27, 31], predicts how
performance improves as the models grow larger, consume more data, and are trained for longer time,
guiding the development of increasingly capable generative models.

Recently, in Large Language Models (LLMs), the study on scaling has expanded to inference-time [7, 69,
90]. By allocating more compute during inference, often through sophisticated search processes, these
works show that LLMs can produce higher-quality and more contextually appropriate responses [20, 74,
85, 87, 95]. Inference-time scaling opens new avenues for improving model performance when additional
resources become available after training.

Diffusion models [26, 70, 72], trained to remove noises from data, are a class of generative models that
dominates the continuous data domains such as images [15], audio [67], and videos [56]. To generate a
single sample, their generation process usually starts from pure noise and requires multiple forward passes
of trained models to denoise and obtain clean data. These forward passes are thus dubbed denoising
steps. Since the number of denoising steps can be adjusted to trade sample quality for computational
cost, the generation process of diffusion models naturally provides flexibility in allocating inference-time
computation budget. Under the context of generative models, such computation budget is also commonly

Correspondence: nm3607@nyu.edu, sainx@google.com




Background: Diffusion Models

Forward Diffusion Process

Reverse Denoising Process

Figure source: https://sushant-kumar.com/blog/ddpm-denoising-diffusion-probabilistic-models
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Background: Test-time Scaling for Diffusion Models

Inference-time Scaling by increasing denoising steps?

Forward Diffusion Process

Reverse Denoising Process

Figure source: https://sushant-kumar.com/blog/ddpm-denoising-diffusion-probabilistic-models
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Background: Test-time Scaling for Diffusion Models

Inference-time Scaling by increasing denoising steps?

180 5/8 B/ /8 XL/8 :
e <a 4 o U wa | Key Question: How fo
160 —&- 52 52 @ L2 @ X2) eoffectively scale diffusion
140 \\ model during test-time?
v 120
4 100 %\‘ —$ | Performance gains tend to plateau. |
L 80 | N\ e
N T, Small models cannot close the
60 -3 ,
performance gap with our large models. |
40 —— -_—
20 —®

101 102 103 104 10°
Sampling Compute (Gflops)

(2

[Peebles et al. Scalable Diffusion Models with Transformers, 2022.]



ethod Overview: Scaling by Search

Prompt: A laptop on top of a teddy bear

|

Diftusion Diffusion
| Model | Model |
| Diffusion Diffusion
| Model | Model |
Diffusion Diffusion

| Model | Model

[Images generated by FLUX-1.dev]
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Method: Design Axes for Search

Diffusion
Model

- Diffusion
Model

Diffusion
Model

- Diffusion
Model

1. Verifiers:

Evaluate the goodness of
‘ candidates

Diffusion
Model

- Diffusion
Model

2. Search Algorithm:
Find better candidates based on the verifiers scores
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Verifiers

Prompt: A laptop on top of a teddy bear

e b ““ -
. -‘\\i.s‘»_"\O_g‘x*
" L W -

% .
&

- Diffusion
~ Model

- Diffusion
~ Model

- Diffusion
~ Model

i

i

i

- Diffusion

Model

- Diffusion

Model

- Diffusion

Model
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1. Verifiers:

Evaluate the goodness of
‘ candidates




Verifiers

- Oracle Verifiers: Inception Score, FID Score
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Verifiers

- Oracle Verifiers: Inception Score,

‘Bear’

> IR Ll o
> IR > Ll o

Inception v3 L Il 0.8 /

Diffusion | 1
Model |

- Diffusion ,
Model |

Diffusion | I
Model |

- Diffusion ,
Model |

- Diffusion | _

~ Diffusion |
| Model

Model

’r’



Verifiers

- Oracle Verifiers:

- Diffusion i
Model |

Diffusion 1
Model |

| Diffusion |
Model |

Model

Model

Model

Diffusion § 1

Diffusion § 1

- Diffusion | _

, FID Score

/8

Batch Stat.
(41, 07)

Inception v3

\R4

Reference Stat. (ﬂra GR)




Verifiers

- Supervised Verifier: CLIP, DINO (with pretrained linear head)

- Diffusion |

- Diffusion |

- Diffusion |

Model

Model

Model

Model

Model

- Diffusion | _

Model

Diffusion § 1

Diffusion § 1
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Verifiers

- Other Verifiers: Aesthetic Score,

Diffusion
Model

- Diffusion
Model

How good-looking is the image”?

- Diffusion
Model

- Diffusion
Model

Aesthetic Predictor

- Diffusion
Model

- Diffusion
Model
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erifiers

- Other Verifiers: Imagereward

{<7)
15

o9

o~
f 9
.a

-
"'_ .

Diffusion |
Model

- Diffusion
Model

How much would a human like
this image? (Image-Text Alignment, Quality)

(55 G
- -~ b
.]':t;';n’h.*‘zu‘ .(bu‘
ot - P
AN SR Ty
i 0 :‘4') \\' ‘F\‘L“J

N S35 ey R
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Diffusion }

- Diffusion , |
| Model

Model

ImageReward

- Diffusion }

 Diffusion |
Model |

Model

[Xu et al. ImageReward: Learning and Evaluating Human Preferences for Text-to-lmage Generation, 2024]
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Verifiers

- Other Verifiers:

- Diffusion ,
Model |

- Diffusion ,
Model |

- Diffusion |
Model |

Model

i
|

Model

Model

Diffusion | 1

Diffusion § 1

- Diffusion | _

Verifier Ensemble

Aesthetic Predictor

Imagereward

Aggregate
Score

[Xu et al. ImageReward: Learning and Evaluating Human Preferences for Text-to-lmage Generation, 2024]
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Search Algorithms

A laptop on top of a teddy bear

Prompt

Diffusion

Model
Diffusion

Diffusion

Diffusion

Model
Diffusion

-
2

S
=
o)

-¢."7..

R

SN

2. Search Algorithm

Find better candidates based on the verifiers scores
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Search Algorithms

 Search Algorithms: Random Search, Zero-Order Search, and Search over Paths.

Random Search Zero-Order Search Search over Paths

0 rejected sample  ® accepted sample sampling path ~ -------- sampling path (refined)

N /

local search algorithms



Search Algorithms

e Search Algorithms: Zero-Order Search,

Zero-Order Search

0 rejected sample  ® accepted sample sampling path ~ -------- sampling path (refined)

Sample noises in a small neighborhood, find the best and iterate.



Search Algorithms

Zero-Order Search,

Diffusion

iffusion

D

Diffusion

thms:

 Search Algor

iffusion

D




Search Algorithms

e Search Algorithms: Zero-Order Search,

| Diffusion —
Model |

- Diffusion | __
Model |




Search Algorithms

e Search Algorithms: Zero-Order Search,
Random Search Zero-Order Search
0 rejected sample  ® accepted sample sampling path ~ -------- sampling path (refined)

Find several local optimals. -} Results are more diverse.



Search Algorithms

e Search Algorithms: Search over Paths

Search over Paths

0 rejected sample  ® accepted sample sampling path ~ -------- sampling path (refined)

Search along the trajectory at intermediate steps.




Search Algorithms

e Search Algorithms: Search over Paths

Denoise

£ Sois
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Search Algorithms

e Search Algorithms: Search over Paths

Denoise

Expand by adding noises




Search Algorithms

e Search Algorithms: Search over Paths

Denoise

Expand by adding noises

Denoise| | Selection




Search Algorithms

Search over Paths

thms:

 Search Algor

Denoise

K
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Search Algorithms

e Search Algorithms: Search over Paths

Denoise

Expand by adding noises

Denoisel | Selection

Expand by adding noises

Denoisel | Selection




Main Results: Search enables better scaling behavior.

== == Scale NFEs with denoising steps  ==@== Scale NFEs with search

10+ 250 NFEs
.
Zo o
Q 1)
S O
Ew 6-

4 -

—

Inference Compute (NFE)

Number of Function Evaluations = denoising steps + search cost
Model: SiT-XL1; and FLUX.1-dev 2. (Additonal forward pass)

[1] Ma et al. SiT: Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant Transformers, 2024
95 [2] B. F. Labs. Flux.1 [dev]. https://blackforestlabs.ai/.



Main Results: Search enables better scaling behavior.

== == Scale NFEs with denoising steps  ==@== Scale NFEs with search

ImageNet
FID-50K
[
Q@ <

(o)}

1SN

s
Inference Compute (NFE)



Main Results: Search enables better scaling behavior.

== == Scale NFEs with denoising steps  ==@== Scale NFEs with search

275 ;
250 ;
225 ;

S

3 200- A

2 175

150 -

125 1

L S ——
102 103 104
Inference Compute (NFE)




Main Results: Search enables better scaling behavior.

== == Scale NFEs with denoising steps  ==@== Scale NFEs with search

0.83 1
0.80 -
0.78 A
0.75 1

0.73

DrawBench
CLIPScore

0.70 -

0.68 -

— T
Inference Compute (NFE)



Main Results: Search enables better scaling behavior.

== == Scale NFEs with denoising steps  ==@== Scale NFEs with search

Aesthetic
U )] o

ek
o)

d
~

ST IRy ey ra——
Inference Compute (NFE)



Visualization

Search leads to a better image-text alignment.

[41]

Increasing NFEs in denoising steps Increasing NFEs in search

“Photo of an athlete cat explaining it's latest scandal at a press conference to journalists.”
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Verifier Results

— — — —_— e — = — = — S— = e —— = — ———

“ Aesthetic CLIPScore ImageReward Verifier
| Verifier Verifier Verifier Ensemble

_ _ I _ — — — e = = e

60

50

40

30

+24.1

+10.6

Relative Improvement in Evaluation Metrics
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Verifier Results

+1.2
Z
L

Aesthetic
Verifier

o - o o -
O LN < mM @\

SO1II9|N uonen|eA ul Juswanoidw| aAlle|aY
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Verifier Results

Verifier Hacking

Aesthetic CLIPScore
Verifier Verifier

60
50
40

30

+24.1

20 +16.5

Relative Improvement in Evaluation Metrics
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Verifier Results

ImageReward Verifier
Verifier Ensemble
+64.3

Relative Improvement in Evaluation Metrics
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Search Algorithms Comparison

All algorithms use DINO as the verifier. Results on Imagenet.

FID-50K

Zero-Order
—e— First-Order 350
-®- Random Search (DINO)
o)
7/
./
J9tte 300
Pl
,/
-~ X 250
A 2
A
200
150

® —@ oo

~i7

"10°

Inference Compute (NFE)
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Zero-Order
- —@— First-Order
-®- Random Search (DINO)

G
Inference Compute (NFE)
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Training-time Compute v.s. Test-time Compute

Performance of search methods across different model sizes (SiT-{B,L,XL}) on ImageNet.

SiT-XL
SIiT-L
20+ >= SiT-B
A4 i
= 15
ok
E _197._»
10- N
5 . =
1o° 10 10°

Inference Compute (GFlops)

(ZO-4 with DINO-LinearHead.)
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1S-50K

450 -
400 - §
300+ {}
250 - |
SIT-XL
200 SiT-L
=@==SiT-B
104 10 108

Inference Compute (GFlops)
(Random Search with DINO-LinearHead.)




Takeaways

> ° Search works in the image generation domain!

. . Limited Scope to Diffusion Models.

» Lacks advanced verifiers and more sophisticated search algorithms..
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Overview

Discussion & Research Proposal

Ongoing explorations and future work
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Main ldea: visual Test-time Scaling via Search

W
N

W
-

method for vision generative models? |

S ——

N
@)

CLIPScore (COCO)
N
o0

N
AN

1 2 4 8 16 32 64 128256
Number of tokens
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Main ldea: visual Test-time Scaling via Search

- —
How about Search? |

Can we find a better test-time scali
method for vision genera

We start with
autoregressive image
generation models

[Tian et al. Visual Autoregressive Modeling: Scalable Image
Generation via Next-Scale Prediction, 2024.]
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Scaling by Search is Better

CLIP Score

36 -

34 -

32 -

30 -

28 A

26 A

24

CLIP Score vs Inference Compute

Scaling by searching is better than
scaling over token number.

Token Count
—-®— 1 tokens
8 tokens
-@— 32 tokens
—-@— 128 tokens
=@ 256 tokens
-fll= N=1 Scaling Across Tokens

2IZ 23 2I4 25 26 2I7 28 29 2I10 211 212
Inference Compute (N X Token Count)

[Bachmann et al. FlexTok: Resampling Images into 1D Token Sequences of Flexible Length, 2025]
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How about other AR models?

Overall Performance on GenEval
100 - 28 93

91
[1" jr
80 - ‘ |
60 - !
40 - | |
20 -
0 ] |
| PYO | (Ch FT
\; us | Sea 0O X
[Deepseek Al. Janus: Decoupling Visual Encoding for [Deepseek Al. Janus-Pro: Unified Multimodal Understanding

Unified Multimodal Understanding and Generation, 2024] 112 and Generation with Data and Model Scaling, 2025]



Acc (%)

How about other AR models?

Overall Performance on GenEval

100 - A =
80 -
60 -
40 -

20 -

[Deepseek Al. Janus: Decoupling Visual Encoding for
Unified Multimodal Understanding and Generation, 2024]

113

[Deepseek Al. Janus-Pro: Unified Multimodal Understanding
and Generation with Data and Model Scaling, 2025]



What else can we achieve by Search?



Flexible control of the generation

An image of a giraffe in a enclosed area is watched by some people
CLIP Verifier | Aesthetic Verifier Combined Verifier Image Reward Verifier

CLIP: 41.438 CLIP: 35.250 CLIP: 37.406 CLIP: 41.594

CLIP: 29.344
| Aesthetic: 3.703 Aesthetic: 4.977 Aesthetic: 6.114 Aesthetic: 6.056 Aesthetic: 5.006
ImageReward: -0.581 ImageReward: 1.374 ImageReward: 0.379 ImageReward: 0.808 ImageReward: 1.679

An image of A kitchen with a slanted ceiling and skylight.
Aesthetic Verifier Combined Verifier Image Reward Verifier

S / Pl ’ t‘
v

'
u
1 L s,
o »
[
»
N\

\\ ) p / n - " .
\/ R i # "J‘

o e R

R

Bl WY

“a

CLIP Verifier

—

| '\
¥

<

are ———e—n - .
CLIP: 3-2.438 CLIP: 37.719 CLIP: 30.297 CLIP: 34.500 CLIP: 35.219
Aesthetic: 5.577 Aesthetic: 4.565 Aesthetic: 6.316 Aesthetic: 6.140 Aesthetic: 5.302
ImageReward: 1.092 ImageReward: 0.721 ImageReward: 0.820 ImageReward: 0.912 ImageReward: 1.301
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Flexible control of the generation

An image of a giraffe in a enclosed area is watched by some people
Aesthetic Verifier

CLIP Verifier Combined Verifier

Image Reward Verifier

CLIP: 29.344 CLIP: 41.438 CLIP: 35.250 CLIP: 37.406 CLIP: 41.594
Aesthetic: 3.703 Aesthetic: 4.977 Aesthetic: 6.114 Aesthetic: 6.056 Aesthetic: 5.006
ImageReward: -0.581 l ImageReward: 1.374 ImageReward: 0.379 ImageReward: 0.808 ImageReward: 1.679
|
An ignage of A kitchen with a slanted ceiling and skylight.
CLIP Verifier Aesthetic Verifier Combined Verifier Image Reward Verifier
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CLIP: 32.438 CLIP: 37.719 CLIP: 30.297 CLIP: 34.500 CLIP: 35.219
Aesthetic: 5.577 Aesthetic: 4.565 Aesthetic: 6.316 Aesthetic: 6.140 Aesthetic: 5.302
ImageReward: 1.092 ImageReward: 0.721 ImageReward: 0.820 ImageReward: 0.912 ImageReward: 1.301
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Flexible control of the generation

CLIP: 29.344
Aesthetic: 3.703
ImageReward: -0.581

CLIP: 32.438
Aesthetic: 5.577
ImageReward: 1.092

CLIP Verifier

CLIP: 41.438
Aesthetic: 4.977
ImageReward: 1.374

CLIP Verifier

CLIP: 37.719
Aesthetic: 4.565
ImageReward: 0.721

An i

CLIP: 35.250

Aesthetic: 6.114
ImageReward: 0.379

|

age of A kitchen with a slanted ceiling and sk

Aesthetic Verifier

CLIP: 30.297
Aesthetic: 6.316
ImageReward: 0.820

CLIP: 37.406
Aesthetic: 6.056
ImageReward: 0.808

Combined Verifier
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CLIP: 34.500
Aesthetic: 6.140
ImageReward: 0.912

Image Reward Verifier

CLIP: 41.594
Aesthetic: 5.006
ImageReward: 1.679

Image Reward Verifier

CLIP: 35.219
Aesthetic: 5.302
ImageReward: 1.301
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Flexible control of the generation

An image of a giraffe in a enclosed area is watched by some people

CLIP Verifier | Aesthetic Verifier | Combined Verifier Image Reward Verifier

CLIP: 29.344 CLIP: 41.438 CLIP: 35.250 CLIP: 37.406 CLIP: 41.594

Aesthetic: 3.703 Aesthetic: 4.977 Aesthetic: 6.114 Aesthetic: 6.056 Aesthetic: 5.006
ImageReward: -0.581 ImageReward: 1.374 ImageReward: 0.379 H ImageReward: 0.808 ImageReward: 1.679

An image of A kitchen with a slanted ceiling and skyli%ht.

CLIP Verifier Aesthetic Verifier Combined Verifier Image Reward Verifier
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CLIP: 3-2.438 CLIP: 37.719 CLIP: 30.297 CLIP: 34.500 CLIP: 35.219
Aesthetic: 5.577 Aesthetic: 4.565 Aesthetic: 6.316 Aesthetic: 6.140 Aesthetic: 5.302
ImageReward: 1.092 ImageReward: 0.721 ImageReward: 0.820 ImageReward: 0.912 ImageReward: 1.301
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Flexible control of the generation

Use a segmentation or object detection model as a verifier (Spatial)

a photo of a vase above a fire hydrant a photo of a cow right of a laptop a photo of a chair left of a zebra

Global Verifier Spatial Verifier Global Verifier Spatial Verifier Global Verifier Spatial Verifier
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Flexible control of the generation

Use image-image similarity as a verifier.

9

.1 EXT CONtrol " s 1 . :
Image control™ s} A PhOtO of a cat i A photo of a cat next to a tree

Zer-shot Multimodal Controlling

120



Search algorithms

450 Search Algorithm Performance per Model

Flextok 2DGridTok
42 .5t

39.83 39.90

40.0

37.51

36.03 36.32

35.0F

Score

32.06 11173

32.5¢}

30.0 [ [ A—

_______________________

_______________________

27.5 . I—

25.0 ‘

[COCO 300 using CLIP as verifier.]



Can we do training-free generation only through search?

“golden retriever”

Verifier (eg. CLIP) Q
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Can we do training-free generation only through search?

“golden retriever”




Image generation by pure search

Score: 27.22 Score: 31.25 Score: 31.52 Score: 32.06 Score: 32.47

(13

cat”

Score: 25.92 Score: 33.00 Score: 34.06 Score: 33.91 Score: 34.75

“A black cat”

Score: 25.19 Score: 33.53 Score: 36.84 Score: 39.69 Score: 41.88

“A detailed photo of a
black cat with green eyes
sitting on a wooden floor,
natural lighting, high

quality”

Search Token Step

1 .~



Image generation by pure search

42.5}

40.0

Score: 27.22 Score: 31.52 Score: 32.06 Score: 32.47
[TA M N
r&?&r < '\'.j?’f:‘ vy
E 4 5 s 37.5}
“cat” 26 'i‘g‘{‘ Hl‘ul‘%t & =_Eute
2 = Ty T 5 A
p 3 7 =3 o
#F 2 A X S & -
0 &x e 4 » wd VN~

35.0¢

Score: 33.00 Score: 34.06 Score: 33.91 Score: 34.75

“A black cat”

32.5¢

CLIP Score

“A detailed photo of a
black cat with green eyes

30.0

sitting on a wooden floor,
natural lighting, high
quality”
Search Token Step : 27 5t Complex: cat on the floor
| —=— Medium: a black cat

5 ol —— Simple: cat

| 1 | | |

5 10 15 20 25 30
Token Search Step

More complex prompts -> Larger improvement by searching!
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Next

Token Structure }-{ . . ,, a Search Algorithm
golden retriever
2D token; 2D ordered Token; Beam Search

1D token; 1D ordered Token, ... Lookahead Search
MCTS,

Verifier (eg. CLIP) O\

Aesthetic Score

ImageReward

i | |I Policy model

Spatial verifier

ol b/

Image-image similarity
VLMs

Conditional AR,
Unconditional AR
Randomized AR, ...

[ 4 4
A~ |
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Next

Token Structure }-{ 3 . "
golden retriever
2D ordered Token;

1D token:; -

Verifier (eg. CLIP) O\

VLMs

Unconditional AR
Randomized AR, ...

[ 4 4
A~ |
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Future Work

* Can we further teach a vision model ‘how to search’ during training?

128 [Generated by FLUX.]



Future Work

* Can we further teach a vision model ‘how to search’ during training?

o« Search for different modalities.
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Future Work

* Can we further teach a vision model ‘how to search’ during training?

o« Search for different modalities.

» [est-time scaling and search in visual perception.

What is written on the notebook?

[OpenAl, Thinking with Image, 2025.]

» The user shared an image found at /mnt/data/own_notebook.jpg and asked me to read the text on it. I’ll

load the image and zoom in to see the writing clearly. It turns out the text is upside down, so I’ll rotate it for

Done

easy reading. Afterward, Il crop the lower part of the jmage to focus on the relevant area;g rotate the |
! 3 | S _—

cropped section to ensure the text is right side up.

It says: “4th February - finish roadmap.”
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Thanks for listening!



