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INTRODUCTION

• Problem: Images are often ambiguous, leading to

multiple plausible ground truth segmentation results. 

• Goal: We aim to capture this data-inherent uncertainty 

(aka Aleatoric uncertainty) by learning the latent 

segmentation distribution.

• Motivation: The segmentation distribution is typically 

multi-modal. However, most previous methods have 

restricted capacity in capturing multi-modality, and rely on 

inefficient sampling to represent the predictive distribution.

• Main idea: We propose to explicitly model the 

multimodal characteristics of the distribution and provide a 

more efficient representation of the uncertainty.

• Compare with previous SOTA models, (.) denotes number of sampled outputs.

• Evaluate the impact of each component on the full-labeled LIDC dataset. (16 samples)
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• Constructed by randomly flipping five classes with certain probabilities (GT distribution known).

• Quantitatively, our model achieves the SOTA or comparable performance on three metrics. 

(Please refer to our paper for more detailed information.)

Image Annotations from different graders 
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• Overview: We introduce a conditional probabilistic model on segmentation 𝜇𝜃 𝑦 𝑥 , and design a distributional loss ℓ
to represent and learn the aleatoric uncertainty. 

where 𝜈𝑛 ≔ σ𝑖=1
𝑀 v𝑛

𝑖
𝛿(𝑦𝑛

𝑖
)

is the empirical GT distribution 𝑀 ≥ 1 .

Modeling Multimodal Aleatoric Uncertainty in Segmentation 
with Mixture of Stochastic Experts

METHOD

RESULTS

1. Mixture of Stochastic Experts (MoSE) Framework

2. Optimal-Transport-Based (OT) Loss
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𝑃∗ = argmin
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𝑃ۦ , ൿ𝐶𝑛 𝑠. 𝑡. 𝑃1𝑀 = 𝑢𝑛 𝜃𝜋 ; 𝑃𝑇1𝑁 = v𝑛

• Efficient bi-level optimization with constraint relaxation.• Formulate the model learning as an OT problem.
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E.g.

• VAEs with diagonal 

Gaussian prior. 

• Low-rank multivariate 

normal distribution in 

the logit space. 

An example of aleatoric uncertainty:
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C. Compact uncertainty representation

ෝ𝜇 𝜃 𝑦 𝑥 = σ𝑘=1
𝐾 𝜋𝑘 𝑥

𝑆
σ𝑖=1
𝑆 𝛿 𝑠𝑘

𝑖

(rewrite as σ𝑖=1
𝑁 𝑢 𝑖 𝛿(𝑠 𝑖 ))

…

𝑃∗ 𝐶

Annealing to 1.

1. Results on the LIDC dataset

2. Ablation study

3. Results on the synthetic multimodal Cityscapes dataset 
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