
Generalize or Detect? Towards Robust Semantic Segmentation 
Under Multiple Distribution Shifts

Background – Semantic Segmentation Under Single Distribution Shift

Domain Generalization (DG) focus on generalizing to covariate shifts.

- e.g., different weather or object attributes.

Out-of-distribution (OOD) Detection focus on detecting semantic shifts. 

- e.g., anomalies or novel objects.

Method – I. Coherent Generative-based Augmentation (CG-Aug) 
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Our Goal - Semantic Segmentation Under Multiple Distribution Shifts.
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DG Techniques (eg. RobustNet) fail to identify unknown objects.

OOD Detection Techniques (eg. RPL) fail to generalize to unknown domains. 

Simple Combination: fail to distinguish two distribution shifts of object level.

Stage 1: Train a semantic-exclusive uncertainty 
function based on backbone features.

Stage 2: Further fintune the feature extractor 
to improve feature representations of both 
known and OOD classes

1. Semantic-Exclusive Uncertainty Recalibration

B. Relative Contrastive Loss:
- Initialize as energy score.

Learnable 
Projection

𝜂! Indicates whether a pixel i is selected, and is 
determined via ‘small loss’ criterion..

Overall Loss:

- Results on Anomaly Segmentation Benchmarks (RoadAnomaly & SMIYC)

- Results on ACDC-POC and MUAD

- Visualization of Uncertainty Maps

CodePaper

Motivation – Can a model jointly handle both kinds of distribution shifts?

DG (eg. RobustNet)

OOD Detection (eg. RPL)

Training set (Eg. Cityscapes) Test img. with both 
covariate and semanti shifts.
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We jointly study both covariate and semantic shifts, so that models can:.

Distinguish between the two-types of distribution shifts.

Generalize to covariate-shift regions and detect semantic-shift regions.

Stage 1: Zero-Shot Semantic-to-Image Generation:
A. Cut-and-paste the semantic mask of novel 

objects to the training labels.
B. Semantic-to-image generation via a pretrained 

generative model (E.g. ControlNet).

Stage 2: Automatically filtering low-quality synthetic 
data: 
• Identify generation failures, such as missing objects 

or incorrectly generated known objects.
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Ø Goal: Augment training images with various semantic
and covariate shifts at both image and object levels 
in a coherent way.

II. Uncertainty Recalibration & Model Training

A. Learnable Uncertainty Function:

2. Two-Stage Noise-Aware Training

Push uncertainty with semantic shifts farther Pull uncertainty with covariate shifts closer

Ω!"#: Outlier pixel indices; Ω$% , Ω&"': Inlier pixel indices from the original and augmented images, respectively; 

Noise-aware segmentation loss
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Note: our method can be applied to pixel-wise models (e.g. DeepLabv3+) or mask-wise models (e.g.
Mask2Former). Please refer to our paper for details.

Ø Goal: Fully leverage the augmented data, so that the model can distinguish between the 
two types of distribution shifts and address each type appropriately.

Experiments

- Visualization of Generated Images & Selection Maps.

SS: Semantic-shift; DS: Domain shift Please refer to our paper for more results.

- Analysis & Ablation Study


